Format

Send to

Choose Destination
J Am Chem Soc. 2012 Oct 24;134(42):17396-9. doi: 10.1021/ja307789s. Epub 2012 Oct 11.

Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.

Author information

1
Laboratoire de Photonique et Interfaces, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, Switzerland. lioz.etgar@mail.huji.ac.il

Abstract

We report for the first time on a hole conductor-free mesoscopic methylammonium lead iodide (CH(3)NH(3)PbI(3)) perovskite/TiO(2) heterojunction solar cell, produced by deposition of perovskite nanoparticles from a solution of CH(3)NH(3)I and PbI(2) in γ-butyrolactone on a 400 nm thick film of TiO(2) (anatase) nanosheets exposing (001) facets. A gold film was evaporated on top of the CH(3)NH(3)PbI(3) as a back contact. Importantly, the CH(3)NH(3)PbI(3) nanoparticles assume here simultaneously the roles of both light harvester and hole conductor, rendering superfluous the use of an additional hole transporting material. The simple mesoscopic CH(3)NH(3)PbI(3)/TiO(2) heterojunction solar cell shows impressive photovoltaic performance, with short-circuit photocurrent J(sc)= 16.1 mA/cm(2), open-circuit photovoltage V(oc) = 0.631 V, and a fill factor FF = 0.57, corresponding to a light to electric power conversion efficiency (PCE) of 5.5% under standard AM 1.5 solar light of 1000 W/m(2) intensity. At a lower light intensity of 100W/m(2), a PCE of 7.3% was measured. The advent of such simple solution-processed mesoscopic heterojunction solar cells paves the way to realize low-cost, high-efficiency solar cells.

PMID:
23043296
DOI:
10.1021/ja307789s

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center