Send to

Choose Destination
Cereb Cortex. 2014 Feb;24(2):304-14. doi: 10.1093/cercor/bhs312. Epub 2012 Oct 5.

A role for the parietal cortex in sensorimotor adaptation of saccades.

Author information

ImpAct Team, Centre de Recherche en Neurosciences de Lyon, INSERM U1028; CNRS UMR5292; Lyon University, 69676 Bron Cedex, France.


Sensorimotor adaptation ensures movement accuracy despite continuously changing environment and body. Adaptation of saccadic eye movements is a classical model of sensorimotor adaptation. Beside the well-established role of the brainstem-cerebellum in the adaptation of reactive saccades (RSs), the cerebral cortex has been suggested to be involved in the adaptation of voluntary saccades (VSs). Here, we provide direct evidence for a causal involvement of the parietal cortex in saccadic adaptation. First, the posterior intraparietal sulcus (pIPS) was identified in each subject using functional magnetic resonance imaging (fMRI). Then, a saccadic adaptation paradigm was used to progressively reduce the amplitude of RSs and VSs, while single-pulse transcranial magnetic stimulation (spTMS) was applied over the right pIPS. The perturbations of pIPS resulted in impairment for the adaptation of VSs, selectively when spTMS was applied 60 ms after saccade onset. In contrast, the adaptation of RSs was facilitated by spTMS applied 90 ms after saccade initiation. The differential effect of spTMS relative to saccade types suggests a direct interference with pIPS activity for the VS adaptation and a remote interference with brainstem-cerebellum activity for the RS adaptation. These results support the hypothesis that the adaptation of VSs and RSs involves different neuronal substrates.


adaptation; posterior intraparietal sulcus; reactive saccades; transcranial magnetic stimulation; voluntary saccades

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center