Format

Send to

Choose Destination
See comment in PubMed Commons below
Eukaryot Cell. 2012 Dec;11(12):1496-502. doi: 10.1128/EC.00196-12. Epub 2012 Oct 5.

Roles of Hsl1p and Hsl7p in Swe1p degradation: beyond septin tethering.

Author information

1
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.

Abstract

The morphogenesis checkpoint in Saccharomyces cerevisiae couples bud formation to the cell division cycle by delaying nuclear division until cells have successfully constructed a bud. The cell cycle delay is due to the mitosis-inhibitory kinase Swe1p, which phosphorylates the cyclin-dependent kinase Cdc28p. In unperturbed cells, Swe1p is degraded via a mechanism thought to involve its tethering to a cortical scaffold of septin proteins at the mother-bud neck. In cells that experience stresses that delay bud formation, Swe1p is stabilized, accumulates, and promotes a G(2) delay. The tethering of Swe1p to the neck requires two regulators, called Hsl1p and Hsl7p. Hsl1p interacts with septins, and Hsl7p interacts with Swe1p; tethering occurs when Hsl1p interacts with Hsl7p. Here we created a version of Swe1p that is artificially tethered to the neck by fusion to a septin so that Swe1p no longer requires Hsl1p or Hsl7p for its localization to the neck. We show that the interaction between Hsl1p and Hsl7p, required for normal Swe1p degradation, is no longer needed for septin-Swe1p degradation, supporting the idea that the Hsl1p-Hsl7p interaction serves mainly to tether Swe1p to the neck. However, both Hsl1p and Hsl7p are still required for Swe1p degradation, implying that these proteins play additional roles beyond localizing Swe1p to the neck.

PMID:
23042131
PMCID:
PMC3536288
DOI:
10.1128/EC.00196-12
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center