Send to

Choose Destination
Math Biosci. 2013 Jan;241(1):34-48. doi: 10.1016/j.mbs.2012.09.005. Epub 2012 Oct 4.

Non-smooth plant disease models with economic thresholds.

Author information

Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.


In order to control plant diseases and eventually maintain the number of infected plants below an economic threshold, a specific management strategy called the threshold policy is proposed, resulting in Filippov systems. These are a class of piecewise smooth systems of differential equations with a discontinuous right-hand side. The aim of this work is to investigate the global dynamic behavior including sliding dynamics of one Filippov plant disease model with cultural control strategy. We examine a Lotka-Volterra Filippov plant disease model with proportional planting rate, which is globally studied in terms of five types of equilibria. For one type of equilibrium, the global structure is discussed by the iterative equations for initial numbers of plants. For the other four types of equilibria, the bounded global attractor of each type is obtained by constructing appropriate Lyapunov functions. The ideas of constructing Lyapunov functions for Filippov systems, the methods of analyzing such systems and the main results presented here provide scientific support for completing control regimens on plant diseases in integrated disease management.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center