Format

Send to

Choose Destination
See comment in PubMed Commons below
Trends Plant Sci. 2013 May;18(5):267-76. doi: 10.1016/j.tplants.2012.09.001. Epub 2012 Oct 3.

DNA-binding domains of plant-specific transcription factors: structure, function, and evolution.

Author information

1
Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology-AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan. k-yamasaki@aist.go.jp

Abstract

The families of the plant-specific transcription factors (TFs) are defined by their characteristic DNA-binding domains (DBDs), such as AP2/ERF, B3, NAC, SBP, and WRKY. Recently, three-dimensional structures of the DBDs, including those in complexes with DNA, were determined by NMR spectroscopy and X-ray crystallography. In this review we summarize the functional and evolutionary implications arising from structure analyses. The unexpected structural similarity between B3 and the noncatalytic DBD of the restriction endonuclease EcoRII allowed us to build structural models of the B3/DNA complex. Most of the DBDs of plant-specific TFs are likely to have originated from endonucleases associated with transposable elements. After the DBDs have been established in unicellular eukaryotes, they experienced extensive plant-specific expansion, by acquiring new functions.

PMID:
23040085
DOI:
10.1016/j.tplants.2012.09.001
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center