Format

Send to

Choose Destination
Lab Chip. 2012 Nov 21;12(22):4884-93. doi: 10.1039/c2lc40523g.

Prediction and control of number of cells in microdroplets by stochastic modeling.

Author information

1
Department of Mathematics, College of Sciences, KoƧ University, Istanbul, Turkey.

Abstract

Manipulation and encapsulation of cells in microdroplets has found many applications in various fields such as clinical diagnostics, pharmaceutical research, and regenerative medicine. The control over the number of cells in individual droplets is important especially for microfluidic and bioprinting applications. There is a growing need for modeling approaches that enable control over a number of cells within individual droplets. In this study, we developed statistical models based on negative binomial regression to determine the dependence of number of cells per droplet on three main factors: cell concentration in the ejection fluid, droplet size, and cell size. These models were based on experimental data obtained by using a microdroplet generator, where the presented statistical models estimated the number of cells encapsulated in droplets. We also propose a stochastic model for the total volume of cells per droplet. The statistical and stochastic models introduced in this study are adaptable to various cell types and cell encapsulation technologies such as microfluidic and acoustic methods that require reliable control over number of cells per droplet provided that settings and interaction of the variables is similar.

PMID:
23034772
PMCID:
PMC3524309
DOI:
10.1039/c2lc40523g
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Royal Society of Chemistry Icon for PubMed Central
Loading ...
Support Center