Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosurg Pediatr. 2012 Dec;10(6):490-7. doi: 10.3171/2012.8.PEDS12116. Epub 2012 Oct 2.

Performance analysis of the protective effects of bicycle helmets during impact and crush tests in pediatric skull models.

Author information

1
Department of Neurosurgery, University of Illinois College of Medicine, Illinois Neurological Institute, 530 NE Glen Oak, Peoria, Illinois 61637, USA. tobiasmattei@yahoo.com

Abstract

OBJECT:

Bicycle accidents are a very important cause of clinically important traumatic brain injury (TBI) in children. One factor that has been shown to mitigate the severity of lesions associated with TBI in such scenarios is the proper use of a helmet. The object of this study was to test and evaluate the protection afforded by a children's bicycle helmet to human cadaver skulls with a child's anthropometry in both "impact" and "crushing" situations.

METHODS:

The authors tested human skulls with and without bicycle helmets in drop tests in a monorail-guided free-fall impact apparatus from heights of 6 to 48 in onto a flat steel anvil. Unhelmeted skulls were dropped at 6 in, with progressive height increases until failure (fracture). The maximum resultant acceleration rates experienced by helmeted and unhelmeted skulls on impact were recorded by an accelerometer attached to the skulls. In addition, compressive forces were applied to both helmeted and unhelmeted skulls in progressive amounts. The tolerance in each circumstance was recorded and compared between the two groups.

RESULTS:

Helmets conferred up to an 87% reduction in so-called mean maximum resultant acceleration over unhelmeted skulls. In compression testing, helmeted skulls were unable to be crushed in the compression fixture up to 470 pound-force (approximately 230 kgf), whereas both skull and helmet alone failed in testing.

CONCLUSIONS:

Children's bicycle helmets provide measurable protection in terms of attenuating the acceleration experienced by a skull on the introduction of an impact force. Moreover, such helmets have the durability to mitigate the effects of a more rare but catastrophic direct compressive force. Therefore, the use of bicycle helmets is an important preventive tool to reduce the incidence of severe associated TBI in children as well as to minimize the morbidity of its neurological consequences.

PMID:
23030382
DOI:
10.3171/2012.8.PEDS12116
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center