Comparative mitogenomic analysis of damsel bugs representing three tribes in the family Nabidae (Insecta: Hemiptera)

PLoS One. 2012;7(9):e45925. doi: 10.1371/journal.pone.0045925. Epub 2012 Sep 28.

Abstract

Background: Nabidae, a family of predatory heteropterans, includes two subfamilies and five tribes. We previously reported the complete mitogenome of Alloeorhynchus bakeri, a representative of the tribe Prostemmatini in the subfamily Prostemmatinae. To gain a better understanding of architecture and evolution of mitogenome in Nabidae, mitogenomes of five species representing two tribes (Gorpini and Nabini) in the subfamily Nabinae were sequenced, and a comparative mitogenomic analysis of three nabid tribes in two subfamilies was carried out.

Methodology/principal findings: Nabid mitogenomes share a similar nucleotide composition and base bias, except for the control region, where differences are observed at the subfamily level. In addition, the pattern of codon usage is influenced by the GC content and consistent with the standard invertebrate mitochondrial genetic code and the preference for A+T-rich codons. The comparison among orthologous protein-coding genes shows that different genes have been subject to different rates of molecular evolution correlated with the GC content. The stems and anticodon loops of tRNAs are extremely conserved, and the nucleotide substitutions are largely restricted to TψC and DHU loops and extra arms, with insertion-deletion polymorphisms. Comparative analysis shows similar rates of substitution between the two rRNAs. Long non-coding regions are observed in most Gorpini and Nabini mtDNAs in-between trnI-trnQ and/or trnS2-nad1. The lone exception, Nabis apicalis, however, has lost three tRNAs. Overall, phylogenetic analysis using mitogenomic data is consistent with phylogenies constructed mainly form morphological traits.

Conclusions/significance: This comparative mitogenomic analysis sheds light on the architecture and evolution of mitogenomes in the family Nabidae. Nucleotide diversity and mitogenomic traits are phylogenetically informative at subfamily level. Furthermore, inclusion of a broader range of samples representing various taxonomic levels is critical for the understanding of mitogenomic evolution in damsel bugs.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Composition
  • Base Sequence
  • Chromosome Mapping
  • Codon
  • Conserved Sequence
  • Evolution, Molecular
  • Genes, rRNA
  • Genome, Insect*
  • Genome, Mitochondrial*
  • Heteroptera / genetics*
  • Male
  • Molecular Sequence Annotation
  • Molecular Sequence Data
  • Phylogeny
  • RNA, Transfer / genetics
  • Sequence Analysis, DNA

Substances

  • Codon
  • RNA, Transfer

Grants and funding

This research is supported by grants from the National Natural Science Foundation of China (Nos. 30825006, 30970394, 31061160186, 31111140015), the Special Fund for Agroscientific Research in the Public Interest (Nos. 201103012, 201103022), the Natural Science Foundation of Beijing (No. 6112013), the Key Laboratory of the Zoological Systematics and Evolution of the Chinese Academy of Sciences (No. O529YX5105), and College of Agriculture, University of Kentucky. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.