Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS Comput Biol. 2012;8(9):e1002680. doi: 10.1371/journal.pcbi.1002680. Epub 2012 Sep 27.

Analysis of surface protein expression reveals the growth pattern of the gram-negative outer membrane.

Author information

1
Department of Bioengineering, Stanford University, Stanford, California, USA.

Abstract

The outer membrane (OM) of Gram-negative bacteria is a complex bilayer composed of proteins, phospholipids, lipoproteins, and lipopolysaccharides. Despite recent advances revealing the molecular pathways underlying protein and lipopolysaccharide incorporation into the OM, the spatial distribution and dynamic regulation of these processes remain poorly understood. Here, we used sequence-specific fluorescent labeling to map the incorporation patterns of an OM-porin protein, LamB, by labeling proteins only after epitope exposure on the cell surface. Newly synthesized LamB appeared in discrete puncta, rather than evenly distributed over the cell surface. Further growth of bacteria after labeling resulted in divergence of labeled LamB puncta, consistent with a spatial pattern of OM growth in which new, unlabeled material was also inserted in patches. At the poles, puncta remained relatively stationary through several rounds of division, a salient characteristic of the OM protein population as a whole. We propose a biophysical model of growth in which patches of new OM material are added in discrete bursts that evolve in time according to Stokes flow and are randomly distributed over the cell surface. Simulations based on this model demonstrate that our experimental observations are consistent with a bursty insertion pattern without spatial bias across the cylindrical cell surface, with approximately one burst of ≈ 10(-2) µm(2) of OM material per two minutes per µm(2). Growth by insertion of discrete patches suggests that stochasticity plays a major role in patterning and material organization in the OM.

PMID:
23028278
PMCID:
PMC3459847
DOI:
10.1371/journal.pcbi.1002680
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center