Send to

Choose Destination
See comment in PubMed Commons below
Cold Spring Harb Protoc. 2012 Oct 1;2012(10):1029-34. doi: 10.1101/pdb.top071464.

In vivo optical microendoscopy for imaging cells lying deep within live tissue.


Although in vivo microscopy has been pivotal in enabling studies of neuronal structure and function in the intact mammalian brain, conventional intravital microscopy has generally been limited to superficial brain areas such as the olfactory bulb, the neocortex, or the cerebellar cortex. For imaging cells in deeper areas, this article discusses in vivo optical microendoscopy using gradient refractive index (GRIN) microlenses that can be inserted into tissue. Our general methodology is broadly applicable to many deep brain regions and areas of the body. Microendoscopes are available in a wide variety of optical designs, allowing imaging across a range of spatial scales and with spatial resolution that can now closely approach that offered by standard water-immersion microscope objectives. The incorporation of microendoscope probes into portable miniaturized microscopes allows imaging in freely behaving animals. When combined with the broad sets of available fluorescent markers, animal preparations, and genetically modified mice, microendoscopic methods enable sophisticated experimental designs for probing how cellular characteristics may underlie or reflect animal behavior and life experience, in healthy animals and animal models of disease.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center