Format

Send to

Choose Destination
Physiol Plant. 2013 Jun;148(2):246-60. doi: 10.1111/j.1399-3054.2012.01704.x. Epub 2012 Nov 1.

MAIGO2 is involved in abscisic acid-mediated response to‚ÄČabiotic stresses and Golgi-to-ER retrograde transport.

Author information

1
Laboratory of Plant Stress Ecophysiology and Biotechnology, Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China.

Abstract

The central role of multisubunit tethering complexes in intracellular trafficking has been established in yeast and mammalian systems. However, little is known about their roles in the stress responses and the early secretory pathway in Arabidopsis. In this study, Maigo2 (MAG2), which is equivalent to the yeast Tip20p and mammalian Rad50-interacting protein, is found to be required for the responses to salt stress, osmotic stress and abscisic acid in seed germination and vegetative growth, and MAG2-like (MAG2L) is partially redundant with MAG2 in response to environmental stresses. MAG2 strongly interacts with the central region of ZW10, and both proteins are important as plant endoplasmic reticulum (ER)-stress regulators. ER morphology and vacuolar protein trafficking are unaffected in the mag2, mag2l and zw10 mutants, and the secretory marker to the apoplast is correctly transported in mag2 plants, which indicate that MAG2 functions as a complex with ZW10, and is potentially involved in Golgi-to-ER retrograde trafficking. Therefore, a new role for ER-Golgi membrane trafficking in abiotic-stress and ER-stress responses is discovered.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center