Format

Send to

Choose Destination
See comment in PubMed Commons below
Dalton Trans. 2012 Dec 7;41(45):13899-907. doi: 10.1039/c2dt31618h. Epub 2012 Sep 28.

Efficient [FeFe] hydrogenase mimic dyads covalently linking to iridium photosensitizer for photocatalytic hydrogen evolution.

Author information

1
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, China.

Abstract

Two [FeFe] hydrogenase mimics, [Fe(2)(μ-pdt)(CO)(5)L1] (L1 = PPh(2)SPhNH(2)) (Ph = phenyl) (2) and [Fe(2)(μ-pdt)(CO)(5)L2] (L2 = PPh(2)PhNH(2)) (3), and two molecular photocatalysts, [(CO)(5)(μ-pdt)Fe(2)PPh(2)SPhNHCO(bpy)(ppy)(2)Ir]PF(6) (bpy = bipyridine, ppy = 2-phenylpyridine) (2a) and [(CO)(5)(μ-pdt)Fe(2)PPh(2)PhNHCO(bpy)(ppy)(2)Ir](PF(6)) (3a), have been designed and synthesized, anchoring Ir(ppy)(2)(mbpy)PF(6) (mbpy = 4-methyl-4'-carbonyl-2,2'-bipyridine) (PS) to one of the iron centers of complexes 2 and 3 by forming amide bonds. Molecular dyads 2a, 3a and the intermolecular systems 2, 3 with PS have also been successfully constructed for photoinduced H(2) production using triethylamine (TEA) as a sacrificial electron donor by visible light (>400 nm) in CH(3)CN-H(2)O solution. The time-dependence of H(2) generation and spectroscopic studies suggest that the activity of H(2) evolution can be tuned by addition of a S atom to the phosphane ligand. The highest turnover numbers (TON) of hydrogen evolution obtained are 127, using 2a as a photocatalyst in a supramolecular system, and 138, based on catalyst 2 in a multi-component system. Density functional theory (DFT) computational studies demonstrate that the S atom in the second coordination sphere makes complex 2 accept an electron more easily than 3 and improves the activity in light-induced hydrogen production.

PMID:
23023604
DOI:
10.1039/c2dt31618h
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center