Send to

Choose Destination
See comment in PubMed Commons below
Dalton Trans. 2012 Dec 7;41(45):13899-907. doi: 10.1039/c2dt31618h. Epub 2012 Sep 28.

Efficient [FeFe] hydrogenase mimic dyads covalently linking to iridium photosensitizer for photocatalytic hydrogen evolution.

Author information

Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, China.


Two [FeFe] hydrogenase mimics, [Fe(2)(μ-pdt)(CO)(5)L1] (L1 = PPh(2)SPhNH(2)) (Ph = phenyl) (2) and [Fe(2)(μ-pdt)(CO)(5)L2] (L2 = PPh(2)PhNH(2)) (3), and two molecular photocatalysts, [(CO)(5)(μ-pdt)Fe(2)PPh(2)SPhNHCO(bpy)(ppy)(2)Ir]PF(6) (bpy = bipyridine, ppy = 2-phenylpyridine) (2a) and [(CO)(5)(μ-pdt)Fe(2)PPh(2)PhNHCO(bpy)(ppy)(2)Ir](PF(6)) (3a), have been designed and synthesized, anchoring Ir(ppy)(2)(mbpy)PF(6) (mbpy = 4-methyl-4'-carbonyl-2,2'-bipyridine) (PS) to one of the iron centers of complexes 2 and 3 by forming amide bonds. Molecular dyads 2a, 3a and the intermolecular systems 2, 3 with PS have also been successfully constructed for photoinduced H(2) production using triethylamine (TEA) as a sacrificial electron donor by visible light (>400 nm) in CH(3)CN-H(2)O solution. The time-dependence of H(2) generation and spectroscopic studies suggest that the activity of H(2) evolution can be tuned by addition of a S atom to the phosphane ligand. The highest turnover numbers (TON) of hydrogen evolution obtained are 127, using 2a as a photocatalyst in a supramolecular system, and 138, based on catalyst 2 in a multi-component system. Density functional theory (DFT) computational studies demonstrate that the S atom in the second coordination sphere makes complex 2 accept an electron more easily than 3 and improves the activity in light-induced hydrogen production.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center