Format

Send to

Choose Destination
See comment in PubMed Commons below
J Allergy Clin Immunol. 2012 Oct;130(4):958-67.e14. doi: 10.1016/j.jaci.2012.07.013.

Influenza enhances caspase-1 in bronchial epithelial cells from asthmatic volunteers and is associated with pathogenesis.

Author information

1
Curriculum in Toxicology, Gillings School of Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Abstract

BACKGROUND:

The leading cause of asthma exacerbation is respiratory viral infection. Innate antiviral defense pathways are altered in the asthmatic epithelium, yet involvement of inflammasome signaling in virus-induced asthma exacerbation is not known.

OBJECTIVE:

This study compared influenza-induced activation of inflammasome and innate immune signaling in human bronchial epithelial cells from volunteers with and without asthma and investigated the role of caspase-1 in epithelial cell antiviral defense.

METHODS:

Differentiated primary human bronchial epithelial cells from volunteers with and without asthma were infected with influenza A virus. An inflammasome-specific quantitative real-time polymerase chain reaction array was used to compare baseline and influenza-induced gene expression profiles. Cytokine secretion, innate immune gene expression, and viral replication were compared between human bronchial epithelial cells from volunteers with and without asthma. Immunofluorescence microscopy was used to evaluate caspase-1 and PYCARD colocalization. Tracheal epithelial cells from caspase-1-deficient or wild-type mice were infected with influenza and assessed for antiviral gene expression and viral replication.

RESULTS:

Human bronchial epithelial cells from asthmatic volunteers had altered influenza-induced expression of inflammasome-related and innate immune signaling components, which correlated with enhanced production of IL-1β, IL-6, and TNF-α. Specifically, influenza-induced caspase-1 expression was enhanced and localization differed in human bronchial epithelial cells from asthmatic volunteers compared to volunteers without asthma. Influenza-infected tracheal epithelial cells from caspase-1-deficient mice had reduced expression of antiviral genes and viral replication.

CONCLUSION:

Caspase-1 plays an important role in the airway epithelial cell response to influenza infection, which is enhanced in asthmatic volunteers, and may contribute to the enhanced influenza-related pathogenesis observed in vivo.

PMID:
23021143
PMCID:
PMC3470476
DOI:
10.1016/j.jaci.2012.07.013
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center