Format

Send to

Choose Destination
See comment in PubMed Commons below
Beilstein J Nanotechnol. 2012;3:564-9. Epub 2012 Jul 31.

Synthesis and electrical characterization of intrinsic and in situ doped Si nanowires using a novel precursor.

Author information

1
Institute of Solid State Electronics, TU-Wien, Floragasse 7, A-1040 Vienna, Austria.

Abstract

Perchlorinated polysilanes were synthesized by polymerization of tetrachlorosilane under cold plasma conditions with hydrogen as a reducing agent. Subsequent selective cleavage of the resulting polymer yielded oligochlorosilanes Si(n)Cl(2) (n) (+2) (n = 2, 3) from which the octachlorotrisilane (n = 3, Cl(8)Si(3), OCTS) was used as a novel precursor for the synthesis of single-crystalline Si nanowires (NW) by the well-established vapor-liquid-solid (VLS) mechanism. By adding doping agents, specifically BBr(3) and PCl(3), we achieved highly p- and n-type doped Si-NWs by means of atmospheric-pressure chemical vapor deposition (APCVD). These as grown NWs were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as electrical measurements of the NWs integrated in four-terminal and back-gated MOSFET modules. The intrinsic NWs appeared to be highly crystalline, with a preferred growth direction of [111] and a specific resistivity of ρ = 6 kΩ·cm. The doped NWs appeared to be [112] oriented with a specific resistivity of ρ = 198 mΩ·cm for p-type Si-NWs and ρ = 2.7 mΩ·cm for n-doped Si-NWs, revealing excellent dopant activation.

KEYWORDS:

chemical vapour deposition; field-effect transistor; oligosilanes; radiation-induced nanostructures; silicon nanowires; vapor–liquid–solid mechanism

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center