Format

Send to

Choose Destination
See comment in PubMed Commons below
Circulation. 2012 Oct 23;126(17):2095-104. doi: 10.1161/CIRCULATIONAHA.111.071480. Epub 2012 Sep 27.

Targeted sarcoplasmic reticulum Ca2+ ATPase 2a gene delivery to restore electrical stability in the failing heart.

Author information

1
Heart and Vascular Center, MetroHealth Campus, Case Western Reserve University, 2500 MetroHealth Dr, Hamann 3, Cleveland, OH 44109-1998, USA. mcutler@metrohealth.org

Abstract

BACKGROUND:

Recently, we reported that sarcoplasmic reticulum Ca(2+) ATPase 2a (SERCA2a), the pump responsible for reuptake of cytosolic calcium during diastole, plays a central role in the molecular mechanism of cardiac alternans. Heart failure (HF) is associated with impaired myocardial calcium handling, deficient SERCA2a, and increased susceptibility to cardiac alternans. Therefore, we hypothesized that restoring deficient SERCA2a by gene transfer will significantly reduce arrhythmogenic cardiac alternans in the failing heart.

METHODS AND RESULTS:

Adult guinea pigs were divided into 3 groups: control, HF, and HF+AAV9.SERCA2a gene transfer. HF resulted in a decrease in left ventricular fractional shortening compared with controls (P<0.001). As expected, isolated HF myocytes demonstrated slower sarcoplasmic reticulum calcium uptake, decreased Ca(2+) release, and increased diastolic Ca(2+) (P<0.05) compared with controls. Moreover, SERCA2a, cardiac ryanodine receptor 2, and sodium-calcium exchanger protein expression was decreased in HF compared with control (P<0.05). As predicted, HF increased susceptibility to cardiac alternans, as evidenced by decreased heart rate thresholds for both V(m) alternans and Ca alternans compared with controls (P<0.01). Interestingly, in vivo gene transfer of AAV9.SERCA2a in the failing heart improved left ventricular contractile function (P<0.01), suppressed cardiac alternans (P<0.01), and reduced ryanodine receptor 2 P(o) secondary to reduction of ryanodine receptor 2-P(S2814) (P<0.01). This ultimately resulted in a decreased incidence of inducible ventricular arrhythmias (P=0.05).

CONCLUSIONS:

These data show that SERCA2a gene transfer in the failing heart not only improves contractile function but also directly restores electric stability through the amelioration of key arrhythmogenic substrate (ie, cardiac alternans) and triggers (ie, sarcoplasmic reticulum Ca(2+) leak).

PMID:
23019291
PMCID:
PMC3538142
DOI:
10.1161/CIRCULATIONAHA.111.071480
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center