Format

Send to

Choose Destination
J Lipid Res. 2012 Dec;53(12):2677-89. doi: 10.1194/jlr.M031245. Epub 2012 Sep 26.

StAR-related lipid transfer domain protein 5 binds primary bile acids.

Author information

1
Département de Biochimie, Faculté de médecine et des sciences de lsanté, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4.

Abstract

Steroidogenic acute regulatory-related lipid transfer (START) domain proteins are involved in the nonvesicular intracellular transport of lipids and sterols. The STARD1 (STARD1 and STARD3) and STARD4 subfamilies (STARD4-6) have an internal cavity large enough to accommodate sterols. To provide a deeper understanding on the structural biology of this domain, the binding of sterols to STARD5, a member of the STARD4 subfamily, was monitored. The SAR by NMR [(1)H-(15)N heteronuclear single-quantum coherence (HSQC)] approach, complemented by circular dichroism (CD) and isothermal titration calorimetry (ITC), was used. Titration of STARD5 with cholic (CA) and chenodeoxycholic acid (CDCA), ligands of the farnesoid X receptor (FXR), leads to drastic perturbation of the (1)H-(15)N HSQC spectra and the identification of the residues in contact with those ligands. The most perturbed residues in presence of ligands are lining the internal cavity of the protein. Ka values of 1.8·10-(4) M(-1) and 6.3·10(4) M(-1) were measured for CA and CDCA, respectively. This is the first report of a START domain protein in complex with a sterol ligand. Our original findings indicate that STARD5 may be involved in the transport of bile acids rather than cholesterol.

PMID:
23018617
PMCID:
PMC3494239
DOI:
10.1194/jlr.M031245
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center