Send to

Choose Destination
J Proteomics. 2013 Jan 14;78:231-44. doi: 10.1016/j.jprot.2012.09.009. Epub 2012 Sep 24.

Phosphoproteome analyses reveal specific implications of Hcls1, p21-activated kinase 1 and Ezrin in proliferation of a myeloid progenitor cell line downstream of wild-type and ITD mutant Fms-like tyrosine kinase 3 receptors.

Author information

Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université de Lyon, Université Lyon1, Bâtiment Mendel, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France.


The tyrosine kinase receptor Flt3 (Fms-like tyrosine kinase 3) is almost always expressed in AML (acute myeloid leukemia) cells, and constitutive activation of Flt3 by ITD (internal tandem duplication) mutations is one of the most common molecular alterations known in AML, especially monocytic AML. Furthermore, Flt3-ligand (FL) was shown as an in vitro growth factor for monocytic precursors, pointing to the important role of Flt3 in the regulation of monocyte/macrophage production. To get a relevant model for studying the molecular mechanisms underlying the physiopathological role of Flt3 on monocytic lineage development, we used the IL-3 dependent murine myeloid progenitors FDC-P1 cell line to generate cells stably co-expressing murine Fms (M-CSF receptor) and human Flt3. Wild type (WT)-Flt3 expressing cells could proliferate in an FL-dependent manner, whereas those expressing Flt3-ITD all survived IL-3 deprivation and showed autonomous proliferation, whereas both types of cells could differentiate to monocytic cells in response to M-CSF. Next, by combining phosphoprotein detection or purification, comparative 2D-PAGE and mass spectrometry sequencing, we sought for downstream mediators of Flt3-WT or Flt3-ITD in FD/Fms cell proliferation. Amongst the differentially expressed and/or phosphorylated proteins, 3 showed a specific implication in FD/Fms cell proliferation: Hcls1 and the Pak1/2 in FL-dependent proliferation of Flt3-WT expressing cells and Ezrin in autonomous proliferation of Flt3-ITD expressing cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center