Format

Send to

Choose Destination
Anat Rec. 1990 Feb;226(2):237-48.

Differentiation of the inner cell mass of the baboon blastocyst.

Author information

1
Department of Human Anatomy, School of Medicine, University of California, Davis 95616.

Abstract

During the blastocyst stage of development in the baboon, the inner cell mass changes from an irregular accumulation of cells within the cavity of the blastocyst to a disk at one side of the blastocyst and finally to a spherical mass of epiblast cells exhibiting a distinct polarity. The cells that will become the primitive endoderm are first seen as flattened but undifferentiated cells on the cavity side of the disk-shaped inner cell mass. After endoderm cells develop their typical cytological characteristics, they extend well beyond the inner cell mass to form parietal endoderm. A basal lamina develops associated with the epiblast cells and mural trophoblast, but not with either parietal or visceral endoderm. Cytological differentiation of inner cell mass cells includes increased numbers of polyribosomes and a change in mitochondria from long, convoluted structures to short, more typical shapes. Evidence that epiblast is polarized is seen by the late zonal blastocyst stage. Apical junctional complexes develop within the center of the epiblast. These junctions presage the development of the potential amniotic cavity. Large vacuoles containing cell debris, some of which contain nuclear fragments, are present at all stages. Extensive cell death occurs during growth of the blastocyst, but the pattern appears to be random and products of cell death are readily phagocytized by adjacent cells.

PMID:
2301740
DOI:
10.1002/ar.1092260213
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center