Format

Send to

Choose Destination
Atherosclerosis. 2012 Nov;225(1):166-72. doi: 10.1016/j.atherosclerosis.2012.09.002. Epub 2012 Sep 13.

Effects of omega-3 fatty acids on postprandial triglycerides and monocyte activation.

Author information

1
Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, 66421 Homburg/Saar, Germany. Stephan.schirmer@uks.eu

Abstract

OBJECTIVE:

Epidemiologic studies suggest that elevated postprandial triglycerides (ppTG) are associated with future cardiovascular events. Monocyte activation plays an important role in vascular diseases. Omega-3 fatty acids (n3-FA) lower fasting TG levels. The effects of n3-FA on ppTG and the role of ppTG for monocyte activation are insufficiently understood.

METHODS AND RESULTS:

23 healthy volunteers and 30 non-diabetic patients with documented coronary artery disease were subjected to an oral TG tolerance test (OTTT) consisting of 80 g cream fat or to water as control (H(2)O). Patients were treated with 4 g n3-FA/day or placebo for 3 weeks in a randomized, placebo-controlled, double-blind, crossover study. Relative postprandial TG increase reached its maximum 4 h after fat intake (185.1 ± 10.9% of baseline). n3-FA reduced fasting TG from 137.1 ± 12.9 to 112.2 ± 8.6 mg/dl (p < 0.05), and maximum ppTG concentrations from 243.6 ± 24.6 to 205.8 ± 17.1 mg/dl (p < 0.05), while relative TG increase (192.8 ± 12.7%) was comparable to placebo. Relative monocytopenia and neutrophilia were detected following fat intake, which was unaffected by n3-FA and also detectable in the H(2)O group. Serum chemotactic cytokine (MCP1 and fractalkine) concentrations and monocyte migration were not affected by fat intake or n3-FA. Monocyte activation markers CD11b and CD14, monocyte subpopulations CD16(+)CD14(high) and CD16(+)CD14(low), sICAM serum levels and markers of oxidative stress remained unchanged by fat intake or n3-FA.

CONCLUSION:

The postprandial TG increase does not stimulate monocytes beyond their circadian activation patterns. n3-FA reduce fasting TG and the postprandial TG increase. n3-FA may therefore allow to prospectively study whether selected patients benefit from TG-lowering independent of LDL- and HDL-cholesterol.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center