Send to

Choose Destination
See comment in PubMed Commons below
J Neurooncol. 2012 Dec;110(3):315-23. doi: 10.1007/s11060-012-0974-5. Epub 2012 Sep 27.

Growth properties of SF188/V+ human glioma in rats in vivo observed by magnetic resonance imaging.

Author information

Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.


SF188/V+ is a highly vascular human glioma model that is based on transfection of vascular endothelial growth factor (VEGF) cDNA into SF188/V- cells. This study aims to assess its growth and vascularity properties in vivo in a rat model. Thirty-two adult rats were inoculated with SF188/V+ tumor cells, and, for comparison, five were inoculated with SF188/V- tumor cells. Several conventional magnetic resonance imaging (MRI) sequences were acquired, and several quantitative structural (T(2) and T(1)), functional [isotropic apparent diffusion coefficient (ADC) and blood flow], and molecular [protein and peptide-based amide proton transfer (APT)] MRI parameters were mapped on a 4.7 T animal scanner. In rats inoculated with SF188/V+ tumor cells, conventional T(2)-weighted images showed a highly heterogeneous tumor mass, and post-contrast T(1)-weighted images showed a heterogeneous, strong enhancement of the mass. There were moderate increases in T(2), T(1), and ADC, and large increases in blood flow and APT in the tumor, compared to contralateral brain tissue. Microscopic examination revealed prominent vascularity and hemorrhage in the VEGF-secreting xenografts as compared to controls, and immunohistochemical staining confirmed increased expression of VEGF in tumor xenografts. Our results indicate that the SF188/V+ glioma model exhibits some MRI and histopathology features that closely resemble human glioblastoma.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center