Send to

Choose Destination
Lab Chip. 2012 Nov 21;12(22):4835-47. doi: 10.1039/c2lc21006a.

Studies of bacterial aerotaxis in a microfluidic device.

Author information

Department of Physics, University of California, San Diego, 9500 Gilman Drive, MC 0374, La Jolla, CA 92093, USA.


Aerotaxis, the directional motion of bacteria in gradients of oxygen, was discovered in the late 19th century and has since been reported in a variety of bacterial species. Nevertheless, quantitative studies of aerotaxis have been complicated by the lack of tools for generation of stable gradients of oxygen concentration, [O(2)]. Here we report a series of experiments on aerotaxis of Escherichia coli in a specially built experimental setup consisting of a computer-controlled gas mixer and a two-layer microfluidic device made of polydimethylsiloxane (PDMS). The setup enables generation of a variety of stable linear profiles of [O(2)] across a long gradient channel, with characteristic [O(2)] ranging from aerobic to microaerobic conditions. A suspension of E. coli cells is perfused through the gradient channel at a low speed, allowing cells enough time to explore the [O(2)] gradient, and the distribution of cells across the gradient channel is analyzed near the channel outlet at a throughput of >10(5) cells per hour. Aerotaxis experiments are performed in [O(2)] gradients with identical logarithmic slopes and varying mean concentrations, as well as in gradients with identical mean concentrations and varying slopes. Experiments in gradients with [O(2)] ranging from 0 to ~11.5% indicate that, in contrast to some previous reports, E. coli cells do not congregate at some intermediate level of [O(2)], but rather prefer the highest accessible [O(2)]. The presented technology can be applied to studies of aerotaxis of other aerobic and microaerobic bacteria.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Royal Society of Chemistry Icon for PubMed Central
Loading ...
Support Center