Format

Send to

Choose Destination
See comment in PubMed Commons below
Antimicrob Agents Chemother. 2012 Dec;56(12):6284-90. doi: 10.1128/AAC.01644-12. Epub 2012 Sep 24.

Noninvasive determination of 2-[18F]-fluoroisonicotinic acid hydrazide pharmacokinetics by positron emission tomography in Mycobacterium tuberculosis-infected mice.

Author information

1
Center for Infection and Inflammation Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Erratum in

  • Antimicrob Agents Chemother. 2013 Jan;57(1):678.

Abstract

Tuberculosis (TB) is a global pandemic requiring sustained therapy to facilitate curing and to prevent the emergence of drug resistance. There are few adequate tools to evaluate drug dynamics within infected tissues in vivo. In this report, we evaluated a fluorinated analog of isoniazid (INH), 2-[(18)F]fluoroisonicotinic acid hydrazide (2-[(18)F]-INH), as a probe for imaging Mycobacterium tuberculosis-infected mice by dynamic positron emission tomography (PET). We developed a tail vein catheter system to safely deliver drugs to M. tuberculosis aerosol-infected mice inside sealed biocontainment devices. Imaging was rapid and noninvasive, and it could simultaneously visualize multiple tissues. Dynamic PET imaging demonstrated that 2-[(18)F]-INH was extensively distributed and rapidly accumulated at the sites of infection, including necrotic pulmonary TB lesions. Compared to uninfected animals, M. tuberculosis-infected mice had a significantly higher PET signal within the lungs (P < 0.05) despite similar PET activity in the liver (P > 0.85), suggesting that 2-[(18)F]-INH accumulated at the site of the pulmonary infection. Furthermore, our data indicated that similar to INH, 2-[(18)F]-INH required specific activation and accumulated within the bacterium. Pathogen-specific metabolism makes positron-emitting INH analogs attractive candidates for development into imaging probes with the potential to both detect bacteria and yield pharmacokinetic data in situ. Since PET imaging is currently used clinically, this approach could be translated from preclinical studies to use in humans.

PMID:
23006755
PMCID:
PMC3497161
DOI:
10.1128/AAC.01644-12
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center