Geometry of the vapor layer under a leidenfrost drop

Phys Rev Lett. 2012 Aug 17;109(7):074301. doi: 10.1103/PhysRevLett.109.074301. Epub 2012 Aug 16.

Abstract

In the Leidenfrost effect, liquid drops deposited on a hot surface levitate on a thin vapor cushion fed by evaporation of the liquid. This vapor layer forms a concave depression in the drop interface. Using laser-light interference coupled to high-speed imaging, we measured the radius, curvature, and height of the vapor pocket, as well as nonaxisymmetric fluctuations of the interface for water drops at different temperatures. The geometry of the vapor pocket depends primarily on the drop size and not on the substrate temperature.