Format

Send to

Choose Destination
See comment in PubMed Commons below
Phys Rev Lett. 2012 Jun 29;108(26):264504. Epub 2012 Jun 28.

Capillary fracturing in granular media.

Author information

1
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 48, Cambridge, Massachusetts 02139, USA.

Abstract

We study the displacement of immiscible fluids in deformable, noncohesive granular media. Experimentally, we inject air into a thin bed of water-saturated glass beads and observe the invasion morphology. The control parameters are the injection rate, the bead size, and the confining stress. We identify three invasion regimes: capillary fingering, viscous fingering, and "capillary fracturing," where capillary forces overcome frictional resistance and induce the opening of conduits. We derive two dimensionless numbers that govern the transition among the different regimes: a modified capillary number and a fracturing number. The experiments and analysis predict the emergence of fracturing in fine-grained media under low confining stress, a phenomenon that likely plays a fundamental role in many natural processes such as primary oil migration, methane venting from lake sediments, and the formation of desiccation cracks.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Physical Society
    Loading ...
    Support Center