Format

Send to

Choose Destination
J Exp Biol. 2013 Feb 1;216(Pt 3):359-68. doi: 10.1242/jeb.072587. Epub 2012 Sep 20.

Ventilation rates and activity levels of juvenile jumbo squid under metabolic suppression in the oxygen minimum zone.

Author information

1
Laboratório Marítimo da Guia, Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal. kjtrubenbach@fc.ul.pt

Abstract

The Humboldt (jumbo) squid, Dosidicus gigas, is a part-time resident of the permanent oxygen minimum zone (OMZ) in the Eastern Tropical Pacific and, thereby, it encounters oxygen levels below its critical oxygen partial pressure. To better understand the ventilatory mechanisms that accompany the process of metabolic suppression in these top oceanic predators, we exposed juvenile D. gigas to the oxygen levels found in the OMZ (1% O(2), 1 kPa, 10 °C) and measured metabolic rate, activity cycling patterns, swimming mode, escape jet (burst) frequency, mantle contraction frequency and strength, stroke volume and oxygen extraction efficiency. In normoxia, metabolic rate varied between 14 and 29 μmol O(2) g(-1) wet mass h(-1), depending on the level of activity. The mantle contraction frequency and strength were linearly correlated and increased significantly with activity level. Additionally, an increase in stroke volume and ventilatory volume per minute was observed, followed by a mantle hyperinflation process during high activity periods. Squid metabolic rate dropped more than 75% during exposure to hypoxia. Maximum metabolic rate was not achieved under such conditions and the metabolic scope was significantly decreased. Hypoxia changed the relationship between mantle contraction strength and frequency from linear to polynomial with increasing activity, indicating that, under hypoxic conditions, the jumbo squid primarily increases the strength of mantle contraction and does not regulate its frequency. Under hypoxia, jumbo squid also showed a larger inflation period (reduced contraction frequency) and decreased relaxed mantle diameter (shortened diffusion pathway), which optimize oxygen extraction efficiency (up to 82%/34%, without/with consideration of 60% potential skin respiration). Additionally, they breathe 'deeply', with more powerful contractions and enhanced stroke volume. This deep-breathing behavior allows them to display a stable ventilatory volume per minute, and explains the maintenance of the squid's cycling activity under such O(2) conditions. During hypoxia, the respiratory cycles were shorter in length but increased in frequency. This was accompanied by an increase in the number of escape jets during active periods and a faster switch between swimming modes. In late hypoxia (onset ~170 ± 10 min), all the ventilatory processes were significantly reduced and followed by a lethargic state, a behavior that seems closely associated with the process of metabolic suppression and enables the squid to extend its residence time in the OMZ.

PMID:
22996449
DOI:
10.1242/jeb.072587
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center