Format
Sort by
Items per page

Send to

Choose Destination

Selected items

Items: 6

1.

Mining and characterization of ubiquitin E3 ligases expressed in the mouse testis.

Hou X, Zhang W, Xiao Z, Gan H, Lin X, Liao S, Han C.

BMC Genomics. 2012 Sep 19;13:495.

2.

Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes.

Altun M, Kramer HB, Willems LI, McDermott JL, Leach CA, Goldenberg SJ, Kumar KG, Konietzny R, Fischer R, Kogan E, Mackeen MM, McGouran J, Khoronenkova SV, Parsons JL, Dianov GL, Nicholson B, Kessler BM.

Chem Biol. 2011 Nov 23;18(11):1401-12. doi: 10.1016/j.chembiol.2011.08.018.

3.

Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels.

Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR.

J Biol Chem. 2011 Dec 2;286(48):41530-8. doi: 10.1074/jbc.M111.248856. Epub 2011 Oct 10.

4.

Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level.

Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, Nielsen ML.

Mol Cell Proteomics. 2011 Mar;10(3):M110.003590. doi: 10.1074/mcp.M110.003590. Epub 2010 Dec 7.

5.

Large-scale analysis of the human ubiquitin-related proteome.

Matsumoto M, Hatakeyama S, Oyamada K, Oda Y, Nishimura T, Nakayama KI.

Proteomics. 2005 Nov;5(16):4145-51.

PMID:
16196087
6.

Multiple functional categories of proteins identified in an in vitro cellular ubiquitin affinity extract using shotgun peptide sequencing.

Gururaja T, Li W, Noble WS, Payan DG, Anderson DC.

J Proteome Res. 2003 Jul-Aug;2(4):394-404.

PMID:
12938929

Supplemental Content

Support Center