Format

Send to

Choose Destination
See comment in PubMed Commons below
Integr Biol (Camb). 2013 Jan;5(1):122-32. doi: 10.1039/c2ib20114c.

Rational design of an immunoconjugate for selective knock-down of leukemia-specific E2A-PBX1 fusion gene expression in human Pre-B leukemia.

Author information

1
Developmental Therapeutics Program, Children's Hospital Los Angeles, Children's Center for Cancer and Blood Diseases, Los Angeles, CA 90027, USA.

Abstract

The t(1;19)(q23;p13) is one of the most common chromosomal translocations in acute lymphoblastic leukemia (ALL) and results in production of the transforming oncoprotein E2A-PBX1. Here we first report a novel, biomarker-guided biotherapy strategy for personalized treatment of t(1;19)(+) ALL. A supervised interrogation of the gene expression profiles of primary leukemic cells from a cohort of 207 children with high risk B-lineage ALL identified up-regulated CD19 gene expression as a biomarker for t(1;19)(+) ALL. A disulfide-linked immunoconjugate of a 5-amino-modified 24 mer phosphorothioate anti-sense E2A-PBX1 oligonucleotide (AON) with a mAb specific for a CD19 receptor (αCD19-AON) was prepared as a CD19-directed and leukemia-specific biotherapeutic agent against E2A-PBX1(+) B-lineage ALL. Treatment of E2A-PBX1(+) leukemia cells with low nanomolar concentrations of αCD19-AON resulted in selective depletion of E2A-PBX1 transcripts and caused apoptotic destruction and abrogation of clonogenic growth. Subcutaneously administered αCD19-AON at a total dose level of 93 nmol kg(-1) delivered over 14 days using a micro-osmotic pump more than doubled the leukemia-free survival time of SCID mice in a xenograft model of E2A-PBX1(+) human B-lineage ALL (82.0 ± 1.9 days vs. 37.0 ± 0.1 days, P < 0.0001). Both the AON moiety and the targeting CD19-specific mAb moiety were required for the in vitro as well as in vivo anti-leukemic activity of αCD19-AON. The observed in vitro and in vivo anti-leukemic potency of the αCD19-AON immunoconjugate provides the first preclinical proof-of-principle that t(1;19)(+) high risk B-lineage ALL can be treated with leukemia-specific biotherapeutic agents that knock-down E2A-PBX1 expression.

PMID:
22990208
DOI:
10.1039/c2ib20114c
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center