Send to

Choose Destination
Appl Biochem Biotechnol. 2012 Dec;168(7):1753-64. doi: 10.1007/s12010-012-9894-2. Epub 2012 Sep 18.

Strain screening, fermentation, separation, and encapsulation for production of nattokinase functional food.

Author information

Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.


This study presents a novel and integrated preparation technology for nattokinase functional food, including strain screening, fermentation, separation, and encapsulation. To rapidly screen a nattokinase-productive strain, PCR-based screening method was combined with fibrinolytic activity-based method, and a high productive strain, Bacillus subtilis LSSE-22, was isolated from Chinese soybean paste. Reduction of poly-γ-glutamic acid (γ-PGA) concentration may contribute to separation of nattokinase and reduction of late-onset anaphylaxis risk. Chickpeas were confirmed as the favorable substrate for enhancement of nattokinase production and reduction of γ-PGA yield. Using cracked chickpeas, the nattokinase activity reached 356.25 ± 17.18 FU/g (dry weight), which is much higher than previous reports. To further reduce γ-PGA concentration, ethanol fractional extraction and precipitation were applied for separation of nattokinase. By extraction with 50 % and precipitation with 75 % ethanol solution, 4,000.58 ± 192.98 FU/g of nattokinase powders were obtained, and the activity recovery reached 89 ± 1 %, while γ-PGA recovery was reduced to 21 ± 2 %. To improve the nattokinase stability at acidic pH condition, the nattokinase powders were encapsulated, and then coated with methacrylic acid-ethyl acrylate copolymer. After encapsulation, the nattokinase was protected from being denatured under various acid conditions, and pH-responsible controlled release at simulated intestinal fluid was realized.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center