Format

Send to

Choose Destination
Food Microbiol. 2012 Dec;32(2):243-53. doi: 10.1016/j.fm.2012.06.006. Epub 2012 Jul 13.

Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts.

Author information

1
UMRA 02 102 PAM laboratoire VALMIS, Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 21078 Dijon cedex, France.

Abstract

There has been increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. The main reason is that the multistarter fermentation process is thought to simulate indigenous fermentation, thus increasing wine aroma complexity while avoiding the risks linked to natural fermentation. However, multistarter fermentation is characterised by complex and largely unknown interactions between yeasts. Consequently the resulting wine quality is rather unpredictable. In order to better understand the interactions that take place between non-Saccharomyces and Saccharomyces yeasts during alcoholic fermentation, we analysed the volatile profiles of several mono-culture and co-cultures. Candida zemplinina, Torulaspora delbrueckii and Metschnikowia pulcherrima were used to conduct fermentations either in mono-culture or in co-culture with S. cerevisiae. Up to 48 volatile compounds belonging to different chemical families were quantified. For the first time, we show that C. zemplinina is a strong producer of terpenes and lactones. We demonstrate by means of multivariate analysis that different interactions exist between the co-cultures studied. We observed a synergistic effect on aromatic compound production when M. pulcherrima was in co-culture with S. cerevisiae. However a negative interaction was observed between C. zemplinina and S. cerevisiae, which resulted in a decrease in terpene and lactone content. These interactions are independent of biomass production. The aromatic profiles of T. delbrueckii and S. cerevisiae in mono-culture and in co-culture are very close, and are biomass-dependent, reflecting a neutral interaction. This study reveals that a whole family of compounds could be altered by such interactions. These results suggest that the entire metabolic pathway is affected by these interactions.

PMID:
22986187
DOI:
10.1016/j.fm.2012.06.006
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center