Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2013 Jan;1829(1):29-38. doi: 10.1016/j.bbagrm.2012.08.006. Epub 2012 Sep 6.

Single-molecule studies of RNAPII elongation.

Author information

1
Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

Abstract

Elongation, the transcriptional phase in which RNA polymerase (RNAP) moves processively along a DNA template, occurs via a fundamental enzymatic mechanism that is thought to be universally conserved among multi-subunit polymerases in all kingdoms of life. Beyond this basic mechanism, a multitude of processes are integrated into transcript elongation, among them fidelity control, gene regulatory interactions involving elongation factors, RNA splicing or processing factors, and regulatory mechanisms associated with chromatin structure. Many kinetic and molecular details of the mechanism of the nucleotide addition cycle and its regulation, however, remain elusive and generate continued interest and even controversy. Recently, single-molecule approaches have emerged as powerful tools for the study of transcription in eukaryotic organisms. Here, we review recent progress and discuss some of the unresolved questions and ongoing debates, while anticipating future developments in the field. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.

PMID:
22982192
PMCID:
PMC3544987
DOI:
10.1016/j.bbagrm.2012.08.006
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center