Format

Send to

Choose Destination
Prog Biophys Mol Biol. 2013 Apr;111(2-3):99-107. doi: 10.1016/j.pbiomolbio.2012.08.014. Epub 2012 Sep 4.

Epigenetic inheritance and plasticity: The responsive germline.

Author information

1
Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Tel Aviv 69978, Israel. jablonka@post.tau.ac.il

Abstract

Developmental plasticity, the capacity of a single genotype to give rise to different phenotypes, affects evolutionary dynamics by influencing the rate and direction of phenotypic change. It is based on regulatory changes in gene expression and gene products, which are partially controlled by epigenetic mechanisms. Plasticity involves not just epigenetic changes in somatic cells and tissues; it can also involve changes in germline cells. Germline epigenetic plasticity increases evolvability, the capacity to generate heritable, selectable, phenotypic variations, including variations that lead to novel functions. I discuss studies that show that some complex adaptive responses to new challenges are mediated by germline epigenetic processes, which can be transmitted over variable number of generations, and argue that the heritable variations that are generated epigenetically have an impact on both small-scale and large-scale aspects of evolution. First, I review some recent ecological studies and models that show that germline (gametic) epigenetic inheritance can lead to cumulative micro-evolutionary changes that are rapid and semi-directional. I suggest that "priming" and "epigenetic learning" may be of special importance in generating heritable, fine-tuned adaptive responses in populations. Second, I consider work showing how genomic and environmental stresses can also lead to epigenome repatterning, and produce changes that are saltational.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center