Send to

Choose Destination
Anal Chem. 2012 Oct 16;84(20):8475-9. doi: 10.1021/ac3005378. Epub 2012 Sep 26.

Low-sample flow secondary electrospray ionization: improving vapor ionization efficiency.

Author information



In secondary electrospray ionization (SESI) systems, gaseous analytes exposed to an elecrospray plume become ionized after charge is transferred from the charging electrosprayed particles to the sample species. Current SESI systems have shown a certain potential. However, their ionization efficiency is limited by space charge repulsion and by the high sample flows required to prevent vapor dilution. As a result, they have a poor conversion ratio of vapor into ions. We have developed and tested a new SESI configuration, termed low-flow SESI, that permits the reduction of the required sample flows. Although the ion to vapor concentration ratio is limited, the ionic flow to sample vapor flow ratio theoretically is not. The new ionizer is coupled to a planar differential mobility analyzer (DMA) and requires only 0.2 lpm of vapor sample flow to produce 3.5 lpm of ionic flow. The achieved ionization efficiency is 1/700 (one ion for every 700 molecules) for TNT and, thus, compared with previous SESI ionizers coupled with atmospheric pressure ionization-mass spectrometry (API-MS) (Mesonero, E.; Sillero, J. A.; Hernández, M.; Fernandez de la Mora, J. Philadelphia PA, 2009) has been improved by a large factor of at least 50-100 (our measurements indicate 70). The new ionizer coupled with the planar DMA and a triple quadrupole mass spectrometer (ABSciex API5000) requires only 20 fg (50 million molecules) to produce a discernible signal after mobility and MS(2) analysis.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center