Format

Send to

Choose Destination
Br J Pharmacol. 2012 Dec;167(8):1629-42. doi: 10.1111/j.1476-5381.2012.02207.x.

Cannabidivarin is anticonvulsant in mouse and rat.

Author information

1
Reading School of Pharmacy, University of Reading, Whiteknights, Reading, UK. a.j.hill@reading.ac.uk

Abstract

BACKGROUND AND PURPOSE:

Phytocannabinoids in Cannabis sativa have diverse pharmacological targets extending beyond cannabinoid receptors and several exert notable anticonvulsant effects. For the first time, we investigated the anticonvulsant profile of the phytocannabinoid cannabidivarin (CBDV) in vitro and in in vivo seizure models.

EXPERIMENTAL APPROACH:

The effect of CBDV (1-100 μM) on epileptiform local field potentials (LFPs) induced in rat hippocampal brain slices by 4-aminopyridine (4-AP) application or Mg(2+) -free conditions was assessed by in vitro multi-electrode array recordings. Additionally, the anticonvulsant profile of CBDV (50-200 mg·kg(-1) ) in vivo was investigated in four rodent seizure models: maximal electroshock (mES) and audiogenic seizures in mice, and pentylenetetrazole (PTZ) and pilocarpine-induced seizures in rats. The effects of CBDV in combination with commonly used antiepileptic drugs on rat seizures were investigated. Finally, the motor side effect profile of CBDV was investigated using static beam and grip strength assays.

KEY RESULTS:

CBDV significantly attenuated status epilepticus-like epileptiform LFPs induced by 4-AP and Mg(2+) -free conditions. CBDV had significant anticonvulsant effects on the mES (≥100 mg·kg(-1) ), audiogenic (≥50 mg·kg(-1) ) and PTZ-induced seizures (≥100 mg·kg(-1) ). CBDV (200 mg·kg(-1) ) alone had no effect against pilocarpine-induced seizures, but significantly attenuated these seizures when administered with valproate or phenobarbital at this dose. CBDV had no effect on motor function.

CONCLUSIONS AND IMPLICATIONS:

These results indicate that CBDV is an effective anticonvulsant in a broad range of seizure models. Also it did not significantly affect normal motor function and, therefore, merits further investigation as a novel anti-epileptic in chronic epilepsy models.

LINKED ARTICLES:

This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8.

PMID:
22970845
PMCID:
PMC3525866
DOI:
10.1111/j.1476-5381.2012.02207.x
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center