Format

Send to

Choose Destination
See comment in PubMed Commons below
Integr Biol (Camb). 2012 Oct;4(10):1263-73.

Effects of shear stress on germ lineage specification of embryonic stem cells.

Author information

1
Tulane University Department of Biomedical Engineering, 500 Lindy Boggs, New Orleans, LA 70118, USA.

Abstract

Mechanobiology to date has focused on differentiated cells or progenitors, yet the effects of mechanical forces on early differentiation of pluripotent stem cells are still largely unknown. To study the effects of cellular deformation, we utilize a fluid flow bioreactor to apply steady laminar shear stress to mouse embryonic stem cells (ESCs) cultured on a two dimensional surface. Shear stress was found to affect pluripotency, as well as germ specification to the mesodermal, endodermal, and ectodermal lineages, as indicated by gene expression of OCT4, T-BRACHY, AFP, and NES, respectively. The ectodermal and mesodermal response to shear stress was dependent on stress magnitude (ranging from 1.5 to 15 dynes cm(-2)). Furthermore, increasing the duration from one to four days resulted in a sustained increase in T-BRACHY and a marked suppression of AFP. These changes in differentiation occurred concurrently with the activation of Wnt and estrogen pathways, as determined by PCR arrays for signalling molecules. Together these studies show that the mechanical microenvironment may be an important regulator during early differentiation events, including gastrulation. This insight furthers understanding of normal and pathological events during development, as well as facilitates strategies for scale up production of stem cells for clinical therapies.

PMID:
22968330
DOI:
10.1039/c2ib20040f
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center