Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2013 Jul;1830(7):3956-64. doi: 10.1016/j.bbagen.2012.08.019. Epub 2012 Aug 29.

Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling.

Author information

  • 1Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA.

Abstract

BACKGROUND:

Thyroid hormone signaling is critical for development, growth and metabolic control in vertebrates. Although serum concentration of thyroid hormone is remarkable stable, deiodinases modulate thyroid hormone signaling on a time- and cell-specific fashion by controlling the activation and inactivation of thyroid hormone.

SCOPE OF THE REVIEW:

This review covers the recent advances in D2 biology, a member of the iodothyronine deiodinase family, thioredoxin fold-containing selenoenzymes that modify thyroid hormone signaling in a time- and cell-specific manner.

MAJOR CONCLUSIONS:

D2-catalyzed T3 production increases thyroid hormone signaling whereas blocking D2 activity or disruption of the Dio2 gene leads to a state of localized hypothyroidism. D2 expression is regulated by different developmental, metabolic or environmental cues such as the hedgehog pathway, the adrenergic- and the TGR5-activated cAMP pathway, by xenobiotic molecules such as flavonols and by stress in the endoplasmic reticulum, which specifically reduces de novo synthesis of D2 via an eIF2a-mediated mechanism. Thus, D2 plays a central role in important physiological processes such as determining T3 content in developing tissues and in the adult brain, and promoting adaptive thermogenesis in brown adipose tissue. Notably, D2 is critical in the T4-mediated negative feed-back at the pituitary and hypothalamic levels, whereby T4 inhibits TSH and TRH expression, respectively. Notably, ubiquitination is a major step in the control of D2 activity, whereby T4 binding to and/or T4 catalysis triggers D2 inactivation by ubiquitination that is mediated by the E3 ubiquitin ligases WSB-1 and/or TEB4. Ubiquitinated D2 can be either targeted to proteasomal degradation or reactivated by deubiquitination, a process that is mediated by the deubiquitinases USP20/33 and is important in adaptive thermogenesis.

GENERAL SIGNIFICANCE:

Here we review the recent advances in the understanding of D2 biology focusing on the mechanisms that regulate its expression and their biological significance in metabolically relevant tissues. This article is part of a Special Issue entitled Thyroid hormone signalling.

PMID:
22967761
PMCID:
PMC4979226
DOI:
10.1016/j.bbagen.2012.08.019
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center