Format

Send to

Choose Destination
See comment in PubMed Commons below
Oncol Lett. 2010 Sep;1(5):913-924. Epub 2010 Sep 1.

Cancer chemopreventive potential of volatile oil from black cumin seeds, Nigella sativa L., in a rat multi-organ carcinogenesis bioassay.

Author information

1
Research Laboratory of Experimental and Molecular Carcinogenesis, Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt.

Abstract

Nigella sativa (N. sativa) is a herbal plant of the Ranunculaceae family that has been widely used for various medicinal and nutritional purposes. Volatile oil extracts along with its major constituents, such as thymoquinone, have recently attracted considerable attention for their antioxidant, immunoprotective and antitumor properties. The present study was conducted to assess the chemopreventive potential of crude oils in N. sativa on tumor formation using a well-established rat multi-organ carcinogenesis model featuring initial treatment with five different carcinogens. Post-initiation administration of 1000 or 4000 ppm N. sativa volatile oil in the diet of male Wistar rats for 30 weeks significantly reduced malignant and benign colon tumor sizes, incidences and multiplicities. The treatment also significantly decreased the incidences and multiplicities of tumors in the lungs and in different parts of the alimentary canal, particularly the esophagus and forestomach. Bromodeoxyuridine labeling indices, reflecting cell proliferation were significantly decreased in various organs and lesions after treatment with the two doses of N. sativa. The plasma levels of insulin growth factor, triglycerides and prostaglandin E2 were also altered. The findings show, for the first time, that N. sativa administration exerts potent inhibitory effects on rat tumor development and on cellular proliferation in multiple organ sites. In particular, the ability to significantly inhibit murine colon, lung, esophageal and forestomach tumors was demonstrated in the post-initiation phase, with no evidence of clinical side effects. The mechanisms are likely to be related to suppression of cell proliferation.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center