Format

Send to

Choose Destination
See comment in PubMed Commons below
Arch Ophthalmol. 2012 Sep;130(9):1118-26. doi: 10.1001/archophthalmol.2012.669.

Distribution of damage to the entire retinal ganglion cell pathway: quantified using spectral-domain optical coherence tomography analysis in patients with glaucoma.

Author information

1
Departments of Electrical and Computer Engineering, University of Iowa, IA, USA.

Abstract

OBJECTIVES To test the hypothesis that the amount and distribution of glaucomatous damage along the entire retinal ganglion cell-axonal complex (RGC-AC) can be quantified and to map the RGC-AC connectivity in early glaucoma using automated image analysis of standard spectral-domain optical coherence tomography. METHODS Spectral-domain optical coherence tomography volumes were obtained from 116 eyes in 58 consecutive patients with glaucoma or suspected glaucoma. Layer and optic nerve head (ONH) analysis was performed; the mean regional retinal ganglion cell layer thickness (68 regions), nerve fiber layer (NFL) thickness (120 regions), and ONH rim area (12 wedge-shaped regions) were determined. Maps of RGC-AC connectivity were created using maximum correlation between regions' ganglion cell layer thickness, NFL thickness, and ONH rim area; for retinal nerve fiber bundle regions, the maximum "thickness correlation paths" were determined. RESULTS The mean (SD) NFL thickness and ganglion cell layer thickness across all macular regions were 22.5 (7.5) μm and 33.9 (8.4) μm, respectively. The mean (SD) rim area across all ONH wedge regions was 0.038 (0.004) mm2. Connectivity maps were obtained successfully and showed typical nerve fiber bundle connectivity of the RGC-AC cell body segment to the initial NFL axonal segment, of the initial to the final RGC-AC NFL axonal segments, of the final RGC-AC NFL axonal to the ONH axonal segment, and of the RGC-AC cell body segment to the ONH axonal segment. CONCLUSIONS In early glaucoma, the amount and distribution of glaucomatous damage along the entire RGC-AC can be quantified and mapped using automated image analysis of standard spectral-domain optical coherence tomography. Our findings should contribute to better detection and improved management of glaucoma.

PMID:
22965586
PMCID:
PMC3691810
DOI:
10.1001/archophthalmol.2012.669
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center