Format

Send to

Choose Destination
See comment in PubMed Commons below
Epigenetics. 2012 Oct;7(10):1161-72. doi: 10.4161/epi.22070. Epub 2012 Sep 10.

Epigenetic modifications and p21-cyclin B1 nexus in anticancer effect of histone deacetylase inhibitors in combination with silibinin on non-small cell lung cancer cells.

Author information

1
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA.

Abstract

There is a renewed focus on targeted therapy against epigenetic events that are altered during the pathogenesis of lung cancer. However, the use of epigenomic modifiers as monotherapy lacks efficacy; thus, there is a need to develop safe and effective drug combinatorial regimens, which reverse epigenetic modifications and exhibit profound anticancer activity. Based on these perspectives, we evaluated, for the first time, the efficacy and associated mechanisms of a novel combinatorial regimen of histone deacetylase inhibitors (HDACi)-trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA)-with silibinin (a flavonolignan with established pre-clinical anti-lung cancer efficacy) against non-small cell lung cancer (NSCLC). Silibinin inhibited HDAC activity and decreased HDAC1-3 levels in NSCLC cells, leading to an overall increase in global histone acetylation states of histones H3 and H4. Combinations of HDCAi with silibinin synergistically augmented the cytotoxic effects of these single agents, which was associated with a dramatic increase in p21 (Cdkn1a). Subsequent ChIP assay indicated increased acetylated histone H3 and H4 levels on p21 promoter region, resulting in its increased transcription. The enhanced p21 levels promoted proteasomal degradation of cyclin B1, the limited supply of which halts the progression of cells into mitosis. Indeed, the resultant biological effect was a significant G 2/M arrest by the combination treatment, followed by apoptotic cell death. Similar epigenetic modulations were observed in vivo, together with a marked reduction in xenograft growth. These findings are both novel and highly significant in establishing that HDACi with silibinin would be safe and effective to suppress NSCLC growth.

PMID:
22965008
PMCID:
PMC3469458
DOI:
10.4161/epi.22070
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis Icon for PubMed Central
    Loading ...
    Support Center