Send to

Choose Destination
See comment in PubMed Commons below
Endocrinology. 2012 Oct;153(10):4749-56. Epub 2012 Sep 7.

Fetal glucocorticoid synthesis is required for development of fetal adrenal medulla and hypothalamus feedback suppression.

Author information

Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.


During pregnancy, fetal glucocorticoid is derived from both maternal supply and fetal secretion. We have created mice with a disruption of the Cyp11a1 gene resulting in loss of fetal steroid secretion but preserving the maternal supply. Cyp11a1null embryos have appreciable although lower amounts of circulating corticosterone, the major mouse glucocorticoid, suggesting that transplacental corticosterone is a major source of corticosterone in fetal circulation. These embryos thus provide a means to examine the effect of fetal glucocorticoids. The adrenal in Cyp11a1 null embryos was disorganized with abnormal mitochondria and oil accumulation. The adrenal medullary cells did not express phenylethanolamine N-methyltransferase and synthesized no epinephrine. Cyp11a1 null embryos had decreased diencephalon Hsd11b1, increased diencephalon Crh, and increased pituitary Pomc expression, leading to higher adrenocorticotropin level in the plasma. These data indicate blunted feedback suppression despite reasonable amounts of circulating corticosterone. Thus, the corticosterone synthesized in situ by the fetus is required for negative feedback suppression of the hypothalamus-pituitary-adrenal axis and for catecholamine synthesis in adrenal medulla.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center