Format

Send to

Choose Destination
Cancer Discov. 2012 Oct;2(10):934-47. doi: 10.1158/2159-8290.CD-12-0103. Epub 2012 Sep 7.

Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors.

Author information

1
Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.

Abstract

The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors is limited by the development of drug resistance. The irreversible EGFR kinase inhibitor WZ4002 is effective against the most common mechanism of drug resistance mediated by the EGFR T790M mutation. Here, we show, in multiple complementary models, that resistance to WZ4002 develops through aberrant activation of extracellular signal-regulated kinase (ERK) signaling caused by either an amplification of mitogen-activated protein kinase 1 (MAPK1) or by downregulation of negative regulators of ERK signaling. Inhibition of MAP-ERK kinase (MEK) or ERK restores sensitivity to WZ4002 and prevents the emergence of drug resistance. We further identify MAPK1 amplification in an erlotinib-resistant EGFR-mutant non-small cell lung carcinoma patient. In addition, the WZ4002-resistant MAPK1-amplified cells also show an increase both in EGFR internalization and a decrease in sensitivity to cytotoxic chemotherapy. Our findings provide insights into mechanisms of drug resistance to EGFR kinase inhibitors and highlight rational combination therapies that should be evaluated in clinical trials.

PMID:
22961667
PMCID:
PMC3477553
DOI:
10.1158/2159-8290.CD-12-0103
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center