Format

Send to

Choose Destination
Gastroenterology. 2012 Dec;143(6):1650-9. doi: 10.1053/j.gastro.2012.08.047. Epub 2012 Sep 6.

Conditional disruption of Axin1 leads to development of liver tumors in mice.

Author information

1
School of Biosciences, Cardiff University, Cardiff, United Kingdom.

Abstract

BACKGROUND & AIMS:

Mutations in components of the Wnt signaling pathway, including β-catenin and AXIN1, are found in more than 50% of human hepatocellular carcinomas (HCCs). Disruption of Axin1 causes embryonic lethality in mice. We generated mice with conditional disruption of Axin1 to study its function specifically in adult liver.

METHODS:

Mice with a LoxP-flanked allele of Axin1 were generated by homologous recombination. Mice homozygous for the Axin1fl/fl allele were crossed with AhCre mice; in offspring, Axin1 was disrupted in liver following injection of β-naphthoflavone (Axin1fl/fl/Cre mice). Liver tissues were collected and analyzed by quantitative real-time polymerase chain reaction and immunoprecipitation, histology, and immunoblot assays.

RESULTS:

Deletion of Axin1 from livers of adult mice resulted in an acute and persistent increase in hepatocyte cell volume, proliferation, and transcription of genes that induce the G(2)/M transition in the cell cycle and cytokinesis. A subset of Wnt target genes was activated, including Axin2, c-Myc, and cyclin D1. However, loss of Axin1 did not increase nuclear levels of β-catenin or cause changes in liver zonation that have been associated with loss of the adenomatous polyposis coli (APC) or constitutive activation of β-catenin. After 1 year, 5 of 9 Axin1fl/fl/Cre mice developed liver tumors with histologic features of HCC.

CONCLUSIONS:

Hepatocytes from adult mice with conditional disruption of Axin1 in liver have a transcriptional profile that differs from that associated with loss of APC or constitutive activation of β-catenin. It might be similar to a proliferation profile observed in a subset of human HCCs with mutations in AXIN1. Axin1fl/fl mice could be a useful model of AXIN1-associated tumorigenesis and HCC.

PMID:
22960659
DOI:
10.1053/j.gastro.2012.08.047
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center