Progress made in the reprogramming field: new factors, new strategies and a new outlook

Curr Opin Genet Dev. 2012 Oct;22(5):435-43. doi: 10.1016/j.gde.2012.08.007. Epub 2012 Sep 5.

Abstract

The ground-breaking work of Yamanaka and Thomson showed that forced expression of just four transcription factors can reprogram mouse and human somatic cells to pluripotency, leading to the discovery of the so-called induced pluripotent stem cells (iPSCs). Similar to embryonic stem cells (ESCs), iPSCs have the ability to permanently self-renew and also give rise to multiple cell types once differentiated. These cells opened up the opportunity to develop human disease models in vitro, drug and toxicity screening tools, as well as a continuous autologous cell source for future cell-based therapies. Therefore, it is not surprising that the methods for generating iPSCs have significantly evolved over the past few years. To date the reprogramming methods include the use of various transfection/transduction systems, small molecules to enhance the reprogramming process, and to adapt to a multitude of different cell type sources. We are now able to convert essentially any somatic cell type into iPSCs with increased efficiency and at higher quality when compared to ESCs. More recently, this field has been expanded to direct reprogramming of one cell type to another, including lineage-specific progenitors. Here, we provide a concise review of methods to generate induced pluripotent stem cells, and discuss the most recent strategies augmenting the reprogramming process and increasing the quality of iPSCs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cell Differentiation
  • Cellular Reprogramming*
  • Disease Models, Animal
  • Embryonic Stem Cells / cytology*
  • Embryonic Stem Cells / metabolism
  • Humans
  • Induced Pluripotent Stem Cells / cytology*
  • Induced Pluripotent Stem Cells / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Transcription Factors