Format

Send to

Choose Destination
See comment in PubMed Commons below
Adv Pharmacol. 2012;65:143-89. doi: 10.1016/B978-0-12-397927-8.00006-3.

Emerging strategies for targeting cell adhesion in multiple myeloma.

Author information

1
Molecular Oncology Program, H Lee Moffitt Cancer Center, Tampa, FL, USA.

Abstract

Multiple myeloma (MM) is an incurable hematological cancer involving proliferation of abnormal plasma cells that infiltrate the bone marrow (BM) and secrete monoclonal antibodies. The disease is clinically characterized by bone lesions, anemia, hypercalcemia, and renal failure. MM is presently treated with conventional therapies like melphalan, doxorubicin, and prednisone; or novel therapies like thalidomide, lenalidomide, and bortezomib; or with procedures like autologous stem cell transplantation. Unfortunately, these therapies fail to eliminate the minimal residual disease that remains persistent within the confines of the BM of MM patients. Mounting evidence indicates that components of the BM-including extracellular matrix, cytokines, chemokines, and growth factors-provide a sanctuary for subpopulations of MM. This co-dependent development of the disease in the context of the BM not only ensures the survival and growth of the plasma cells but contributes to de novo drug resistance. In addition, by fostering homing, angiogenesis, and osteolysis, this crosstalk plays a critical role in the progression of the disease. Not surprisingly then, over the past decade, several strategies have been developed to disrupt this communication between the plasma cells and the BM components including antibodies, peptides, and inhibitors of signaling pathways. Ultimately, the goal is to use these therapies in combination with the existing antimyeloma agents in order to further reduce or abolish minimal residual disease and improve patient outcomes.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center