Format

Send to

Choose Destination
Cell Signal. 2012 Dec;24(12):2396-406. doi: 10.1016/j.cellsig.2012.08.007. Epub 2012 Aug 28.

cAMP-dependent protein kinase is essential for hypoxia-mediated epithelial-mesenchymal transition, migration, and invasion in lung cancer cells.

Author information

1
Department of Pediatrics, University of Illinois at Chicago, Chicago, IL 60612, USA.

Abstract

Lung cancer is the leading cause of cancer-related death worldwide. Hypoxia is known to increase cancer cell migration and invasion. We have previously reported that hypoxia induces epithelial-mesenchymal transition (EMT) in lung cancer cells. However, it is unknown whether hypoxia promotes lung cancer cell migration and invasion via EMT and whether cyclic AMP (cAMP) dependent protein kinase (PKA) plays a role in this process. We found that hypoxia increased PKA activity and induced mRNA and protein expression of PKA catalytic subunit α (PKACA), and regulatory subunits R1A and R1B. Knockdown of HIF-1/2α prevented hypoxia-mediated induction of PKACA mRNA expression and PKA activity. Inhibition of PKA activity with chemical inhibitors prevented EMT induced by hypoxia and tumor growth factor β1. However, activation of PKA by forskolin and 8-Br-cAMP did not induce EMT. Furthermore, treatment with H89 and knockdown of PKACA prevented hypoxia-mediated, EMT, cell migration, and invasion, whereas overexpression of mouse PKACA rescued hypoxia-mediated migration and invasion in PKACA deficient cancer cells. Our results suggest that hypoxia enhances PKA activity by upregulating PKA gene expression in a HIF dependent mechanism and that PKA plays a key role in hypoxia-mediated EMT, migration, and invasion in lung cancer cells.

PMID:
22954688
DOI:
10.1016/j.cellsig.2012.08.007
[Indexed for MEDLINE]

Publication type, MeSH terms, Substances

Publication type

MeSH terms

Substances

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center