Format

Send to

Choose Destination
Chem Res Toxicol. 2012 Oct 15;25(10):2236-52. doi: 10.1021/tx300313b. Epub 2012 Sep 20.

Theoretical studies of chemical reactivity of metabolically activated forms of aromatic amines toward DNA.

Author information

1
Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D , Pepparedsleden 1, S-431 83 Mölndal, Sweden. igor.shamovsky@astrazeneca.com

Abstract

The metabolism of aromatic and heteroaromatic amines (ArNH₂) results in nitrenium ions (ArNH⁺) that modify nucleobases of DNA, primarily deoxyguanosine (dG), by forming dG-C8 adducts. The activated amine nitrogen in ArNH⁺ reacts with the C8 of dG, which gives rise to mutations in DNA. For the most mutagenic ArNH₂, including the majority of known genotoxic carcinogens, the stability of ArNH⁺ is of intermediate magnitude. To understand the origin of this observation as well as the specificity of reactions of ArNH⁺ with guanines in DNA, we investigated the chemical reactivity of the metabolically activated forms of ArNH₂, that is, ArNHOH and ArNHOAc, toward 9-methylguanine by DFT calculations. The chemical reactivity of these forms is determined by the rate constants of two consecutive reactions leading to cationic guanine intermediates. The formation of ArNH⁺ accelerates with resonance stabilization of ArNH⁺, whereas the formed ArNH⁺ reacts with guanine derivatives with the constant diffusion-limited rate until the reaction slows down when ArNH⁺ is about 20 kcal/mol more stable than PhNH⁺. At this point, ArNHOH and ArNHOAc show maximum reactivity. The lowest activation energy of the reaction of ArNH⁺ with 9-methylguanine corresponds to the charge-transfer π-stacked transition state (π-TS) that leads to the direct formation of the C8 intermediate. The predicted activation barriers of this reaction match the observed absolute rate constants for a number of ArNH⁺. We demonstrate that the mutagenic potency of ArNH₂ correlates with the rate of formation and the chemical reactivity of the metabolically activated forms toward the C8 atom of dG. On the basis of geometric consideration of the π-TS complex made of genotoxic compounds with long aromatic systems, we propose that precovalent intercalation in DNA is not an essential step in the genotoxicity pathway of ArNH₂. The mechanism-based reasoning suggests rational design strategies to avoid genotoxicity of ArNH₂ primarily by preventing N-hydroxylation of ArNH₂.

PMID:
22946514
DOI:
10.1021/tx300313b
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center