Send to

Choose Destination
Biol Chem. 2012 Sep;393(9):899-905. doi: 10.1515/hsz-2012-0140.

Processive proteolysis by γ-secretase and the mechanism of Alzheimer's disease.

Author information

Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, H.I.M. 754, Boston, MA 02115, USA.


γ-Secretase is a membrane-embedded protease complex with presenilin as the catalytic component. Cleavage within the transmembrane domain of the amyloid β-protein precursor (APP) by γ-secretase produces the C-terminus of the amyloid β-peptide (Aβ), a proteolytic product prone to aggregation and strongly linked to Alzheimer's disease (AD). Presenilin mutations are associated with early-onset AD, but their pathogenic mechanisms are unclear. One hypothesis is that these mutations cause AD through a toxic gain of function, changing γ-secretase activity to increase the proportion of 42-residue Aβ over the more soluble 40-residue form. A competing hypothesis is that the mutations cause AD through a loss of function, by reducing γ-secretase activity. However, γ-secretase apparently has two types of activities, an endoproteolytic function that first cuts APP to generate a 48/49-residue form of Aβ, and a carboxypeptidase activity that processively trims these longer Aβ intermediates approximately every three residues to form shorter, secreted forms. Recent studies suggest a resolution of the gain-of-function vs. loss-of-function debate: presenilin mutations may increase the proportion of longer, more aggregation-prone Aβ by specifically decreasing the trimming activity of γ-secretase. That is, the reduction of this particular proteolytic function of presenilin, not its endoproteolytic activity, may lead to the neurotoxic gain of function.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Sheridan PubFactory
Loading ...
Support Center