Send to

Choose Destination
Cytokine. 2012 Dec;60(3):806-11. doi: 10.1016/j.cyto.2012.08.003. Epub 2012 Sep 1.

Microbial cell components induced tolerance to flagellin-stimulated inflammation through Toll-like receptor pathways in intestinal epithelial cells.

Author information

Department of Pediatrics, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA.


In the intestine, bacterial components activate innate responses that protect the host. We hypothesize that bacterial components reduce Interleukin-8 (IL-8) production in intestinal epithelial cells stimulated by flagellin via the Toll-like receptor (TLR) signaling pathway. Caco-2 cells were pretreated with various doses of lipopolysaccharide (LPS), lipoteichoic acid (LTA), or low-dose flagellin (LDFL) for 24h. Cells were then treated with flagellin (FL) 500 ng/ml (HDFL) for another 48 h. IL-8 production was measured in the cell culture medium by ELISA. Eighty-four genes in the TLR pathway were evaluated by RT Profiler PCR Array. Pathway Studio 8.0 software was used for altered pathway analysis. HDFL induced IL-8 production by 19-fold (p<0.01). Pretreatment with LDFL at 20, 10 or 1 ng/ml reduced HDFL-induced IL-8 production by 61%, 52% and 40%, respectively (p<0.05). LPS at 50 μg/ml decreased HDFL-induced IL-8 production by 38% (p<0.05). HDFL up-regulated CXCL10, IL1B, IL-8, IRAK2, NF-κB1 and I-κB (all p<0.05). Pathway Studio analysis showed that HDFL induced cell processes including inflammation, cell death and apoptosis. Pretreatment with LDFL at 10 ng/ml down-regulated FADD, FOS, MAP4K4, MyD88, TLR2, TLR3 and TNFERSF1A compared to HDFL (all p<0.05). These down-regulated genes are integral for numerous cell functions including inflammatory response, cell death, apoptosis and infection. These results demonstrate that LPS and LDFL provoke tolerance to HDFL-induced IL-8 production. This tolerance effect was accompanied by a complex interaction of multiple genes related to inflammatory as well as other responses in the TLR pathway rather than a single gene alteration.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center