Send to

Choose Destination
Int J Mol Sci. 2012;13(7):8379-87. doi: 10.3390/ijms13078379. Epub 2012 Jul 5.

Astragalus membranaceus inhibits inflammation via phospho-P38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB pathways in advanced glycation end product-stimulated macrophages.

Author information

Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China; E-Mails: (Q.Q.); (J.N.).


Advanced glycation end products (AGEs) and inflammation contribute to the development of diabetic complications. Astragalus membranaceus has properties of immunological regulation in many diseases. The aim of this study was to determine the function of A. membranaceus extract (AME) on the AGE-induced inflammatory response in Ana-1 macrophages. The viability of cells treated with AME or AGEs was evaluated with the MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] method. The secretion and mRNA levels of IL-1β and TNF-α were measured by ELISA and RT-PCR, respectively. The activity of NF-κB was assayed by EMSA. The phosphorylation of p38 MAPK was assessed by western blotting. The results showed that AME was not toxic to macrophages. The treatment of macrophages with AME effectively inhibited AGE-induced IL-1β and TNF-α secretion and mRNA expression in macrophages. These effects may be mediated by p38 MAPK and the NF-κB pathway. The results suggest that AME can inhibit AGE-induced inflammatory cytokine production to down-regulate macrophage-mediated inflammation via p38 MAPK and NF-κB signaling pathways and indicate that AME could be an immunoregulatory agent against AGE-induced inflammation in diabetes.


Astragalus membranaceus; advanced glycation end products; diabetes; inflammation; macrophage

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center