Format

Send to

Choose Destination
Acta Biomater. 2013 Jan;9(1):4592-8. doi: 10.1016/j.actbio.2012.08.039. Epub 2012 Aug 30.

Micropatterning-retinoic acid co-control of neuronal cell morphology and neurite outgrowth.

Author information

1
Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, USA.

Abstract

Creating physical-biochemical superposed microenvironments optimal for stimulating neurite outgrowth would be beneficial for neuronal regenerative medicine. We investigated potential co-regulatory effects of cell micropatterning and retinoic acid (RA) soluble factor on neuronal cell morphology and neurite outgrowth. Human neuroblastoma (SH-SY5Y) cell patterning sensitivity could be enhanced by poly-L-lysine-g-polyethylene glycol cell-repellent back-filling, enabling cell confinement in lanes as narrow as 5 μm. Cells patterned on narrow (5 and 10 μm) lanes showed preferred nucleus orientation following the patterning direction. These cells also showed high nucleus aspect ratio but constrained nucleus spreading. On the other hand, cells on wide (20 μm and above) lanes showed random nucleus orientation and cell and nucleus sizes similar to those on unpatterned controls. All these changes were generally maintained with or without RA. Confining cells on narrow (5 and 10 μm) lanes, even without RA, significantly enhanced neurite extension relative to unpatterned control, which was further stimulated by RA. Interestingly, cell patterning on 5 and 10 μm lanes without RA produced longer neurites relative to the RA treatment alone case. Our data on the potential interplay between microscale physical cell confinement and RA-soluble stimulation may provide a new, integrative insight on how to trigger neurite/axon formation for neuronal regenerative medicine.

PMID:
22939924
DOI:
10.1016/j.actbio.2012.08.039
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center