Send to

Choose Destination
J Virol. 2012 Dec;86(23):12525-30. doi: 10.1128/JVI.01963-12. Epub 2012 Aug 29.

Ultrasensitive allele-specific PCR reveals rare preexisting drug-resistant variants and a large replicating virus population in macaques infected with a simian immunodeficiency virus containing human immunodeficiency virus reverse transcriptase.

Author information

HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, USA.


It has been proposed that most drug-resistant mutants, resulting from a single-nucleotide change, exist at low frequency in human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) populations in vivo prior to the initiation of antiretroviral therapy (ART). To test this hypothesis and to investigate the emergence of resistant mutants with drug selection, we developed a new ultrasensitive allele-specific PCR (UsASP) assay, which can detect drug resistance mutations at a frequency of ≥0.001% of the virus population. We applied this assay to plasma samples obtained from macaques infected with an SIV variant containing HIV-1 reverse transcriptase (RT) (RT-simian-human immunodeficiency [SHIV](mne)), before and after they were exposed to a short course of efavirenz (EFV) monotherapy. We detected RT inhibitor (RTI) resistance mutations K65R and M184I but not K103N in 2 of 2 RT-SHIV-infected macaques prior to EFV exposure. After three doses over 4 days of EFV monotherapy, 103N mutations (AAC and AAT) rapidly emerged and increased in the population to levels of ∼20%, indicating that they were present prior to EFV exposure. The rapid increase of 103N mutations from <0.001% to 20% of the viral population indicates that the replicating virus population size in RT-SHIV-infected macaques must be 10(6) or more infected cells per replication cycle.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center